Содержимое курса
Additional and Extra materials
Here you can find different useful links, books and worksheets
0/6
General physics
    Learning Objectives: Master the Fundamentals
    Cambridge AS A Level Physics Curriculum (1.1 & 1.2):

    • 1.1.1 Understand that all physical quantities consist of a numerical magnitude and a unit
    • 1.1.2 Make reasonable estimates of physical quantities included within the syllabus
    • 1.2.1 Recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K)
    • 1.2.2 Express derived units as products or quotients of the SI base units and use the derived units for quantities listed in this syllabus as appropriate
    • 1.2.3 Use SI base units to check the homogeneity of physical equations
    • 1.2.4 Recall and use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)
    Language Objectives: Build Scientific Communication Skills
    • Use appropriate scientific vocabulary when describing physical quantities and units
    • Express measurements using correct notation with numerical values and units
    • Communicate unit conversions and dimensional analysis clearly
    • Discuss the importance of standardized units in scientific communication
    • Apply proper pronunciation of SI prefixes and unit names
    Key Terms: Essential Scientific Vocabulary
    English TermRussian TranslationKazakh Translation
    Physical QuantityФизическая величинаФизикалық шама
    MagnitudeВеличина/РазмерМөлшер
    UnitЕдиница измеренияӨлшем бірлігі
    SI Base UnitОсновная единица СИХБЖ негізгі бірлігі
    Derived UnitПроизводная единицаТуынды бірлік
    PrefixПриставкаПрефикс
    Dimensional AnalysisРазмерностный анализӨлшемді талдау
    HomogeneityОднородностьБіртектілік
    StandardСтандартСтандарт
    MeasurementИзмерениеӨлшеу
    Concept Cards: Visual Learning Tools

    Physical Quantity

    A physical quantity has two parts: Numerical Magnitude + Unit Example: 5.2 meters • 5.2 = numerical magnitude • meters = unit

    SI Base Units

    Remember LMTIT:Length: meter (m) • Mass: kilogram (kg) • Time: second (s) • I (current): ampere (A) • Temperature: kelvin (K)

    Prefixes Remember

    Large to Small: Tera (T) → Giga (G) → Mega (M) → kilo (k) → BASE UNIT → deci (d) → centi (c) → milli (m) → micro (μ) → nano (n) → pico (p)

    Glossary: Essential Definitions
    Physical Quantity: A property of matter or physical phenomenon that can be measured and expressed as a numerical value multiplied by a unit.
    Translation
    Kazakh: Физикалық шама — заттың немесе физикалық құбылыстың өлшенетін және сандық мәнді өлшем бірлігіне көбейту арқылы өрнектелетін қасиеті.
    Magnitude: The numerical value of a physical quantity, representing how many units are contained in the measurement.
    Translation
    Kazakh: Мөлшер — физикалық шаманың сандық мәні, өлшеуде неше бірлік бар екенін көрсетеді.
    SI Base Unit: One of the seven fundamental units in the International System of Units (SI) from which all other units can be derived.
    Translation
    Kazakh: ХБЖ негізгі бірлігі — Халықаралық бірліктер жүйесіндегі (ХБЖ) жеті негізгі бірліктің бірі, олардан барлық басқа бірліктерді шығаруға болады.
    Derived Unit: A unit that is expressed in terms of base units through mathematical relationships, such as area (m²) or velocity (m/s).
    Translation
    Kazakh: Туынды бірлік — математикалық қатынастар арқылы негізгі бірліктер тұрғысынан өрнектелетін бірлік, мысалы аудан (м²) немесе жылдамдық (м/с).
    Prefix: A symbol placed before a unit to indicate a multiple or submultiple of that unit, making it easier to express very large or very small quantities.
    Translation
    Kazakh: Префикс — сол бірліктің еселігін немесе бөлшегін көрсету үшін бірліктің алдында қойылатын белгі, өте үлкен немесе өте кіші шамаларды өрнектеуді жеңілдетеді.
    Dimensional Analysis: A method used to check equations and convert between units by analyzing the dimensions of physical quantities.
    Translation
    Kazakh: Өлшемді талдау — физикалық шамалардың өлшемдерін талдау арқылы теңдеулерді тексеру және бірліктерді түрлендіру үшін қолданылатын әдіс.
    Homogeneity: The property of an equation where all terms have the same dimensions, ensuring the equation is physically meaningful.
    Translation
    Kazakh: Біртектілік — теңдеудің барлық мүшелерінің бірдей өлшемдері бар қасиеті, теңдеудің физикалық мағынасын қамтамасыз етеді.
    Theory: Understanding Physical Quantities and Units

    What are Physical Quantities?

    Every measurement in physics consists of two essential parts: a numerical magnitude and a unit. For example, when we say «the length is 5.2 meters,» the number 5.2 is the magnitude, and «meters» is the unit.

    Kazakh Translation
    Физикадағы әрбір өлшеу екі маңызды бөліктен тұрады: сандық мөлшер және бірлік. Мысалы, «ұзындық 5,2 метр» деп айтқанда, 5,2 саны — мөлшер, ал «метр» — бірлік.

    The International System of Units (SI)

    The SI system is the modern form of the metric system and is the world’s most widely used system of measurement. It provides a standardized way for scientists worldwide to communicate measurements.

    SI Base Quantities and Units

    There are seven fundamental quantities in SI, but for AS Level Physics, we focus on five:

    Base QuantitySymbolSI UnitUnit Symbol
    Lengthlmeterm
    Massmkilogramkg
    Timetseconds
    Electric CurrentIampereA
    TemperatureTkelvinK
    Kazakh Translation
    ХБЖ жүйесі — метрикалық жүйенің қазіргі заманғы түрі және әлемде ең кең қолданылатын өлшеу жүйесі. Ол әлем бойынша ғалымдарға өлшеулерді хабарласудың стандартталған тәсілін береді.

    Derived Units

    Derived units are formed by combining base units. They can be expressed as products or quotients of base units. Common Derived Units:

    • Area: m² (meter squared)
    • Volume: m³ (meter cubed)
    • Velocity: m/s or m s⁻¹
    • Acceleration: m/s² or m s⁻²
    • Force: N (newton) = kg⋅m⋅s⁻²
    • Energy: J (joule) = kg⋅m²⋅s⁻²
    Kazakh Translation
    Туынды бірліктер негізгі бірліктерді біріктіру арқылы құрылады. Олар негізгі бірліктердің көбейтіндісі немесе бөліндісі ретінде өрнектелуі мүмкін.

    SI Prefixes

    Prefixes are used to express multiples or submultiples of units, making it easier to work with very large or very small quantities.

    PrefixSymbolFactorExample
    teraT10¹²THz (terahertz)
    gigaG10⁹GHz (gigahertz)
    megaM10⁶MHz (megahertz)
    kilok10³km (kilometer)
    decid10⁻¹dm (decimeter)
    centic10⁻²cm (centimeter)
    millim10⁻³mm (millimeter)
    microμ10⁻⁶μm (micrometer)
    nanon10⁻⁹nm (nanometer)
    picop10⁻¹²pm (picometer)

    Dimensional Analysis and Homogeneity

    Dimensional analysis is a powerful tool for checking the correctness of equations. For an equation to be physically meaningful, all terms must have the same dimensions. Example: In the equation v = u + at

    • v has dimensions [L T⁻¹]
    • u has dimensions [L T⁻¹]
    • at has dimensions [L T⁻²] × [T] = [L T⁻¹]

    All terms have the same dimensions, so the equation is homogeneous.

    Kazakh Translation
    Өлшемді талдау теңдеулердің дұрыстығын тексерудің қуатты құралы. Теңдеудің физикалық мағынасы болу үшін барлық мүшелердің бірдей өлшемдері болуы керек.
    Memory Exercise: Master the Terminology
    Exercise 1: Complete the SI base units: 1. Length is measured in _______ (symbol: _____) 2. Mass is measured in _______ (symbol: _____) 3. Time is measured in _______ (symbol: _____) 4. Electric current is measured in _______ (symbol: _____) 5. Temperature is measured in _______ (symbol: _____)
    Answer
    1. meters (m) 2. kilograms (kg) 3. seconds (s) 4. amperes (A) 5. kelvins (K)
    Exercise 2: Match the prefix to its factor: 1. nano (n) → a) 10⁶ 2. mega (M) → b) 10⁻⁹ 3. milli (m) → c) 10³ 4. kilo (k) → d) 10⁻³
    Answer
    1. nano (n) → b) 10⁻⁹ 2. mega (M) → a) 10⁶ 3. milli (m) → d) 10⁻³ 4. kilo (k) → c) 10³
    Exercise 3: Identify base or derived units: 1. m/s² (acceleration) — ____________ 2. kg (mass) — ____________ 3. m² (area) — ____________ 4. A (current) — ____________
    Answer
    1. derived unit 2. base unit 3. derived unit 4. base unit
    Worked Examples: Problem Solving Practice

    Example 1: Unit Conversion

    Problem: Convert 2.5 km to meters and to millimeters.

    Solution
    Solution: To meters: 2.5 km = 2.5 × 10³ m = 2500 m To millimeters: 2.5 km = 2.5 × 10³ m = 2.5 × 10³ × 10³ mm = 2.5 × 10⁶ mm = 2,500,000 mm
    Pronunciation Guide
    kilometer [ˈkɪləˌmiːtər] - километр meter [ˈmiːtər] - метр millimeter [ˈmɪləˌmiːtər] - миллиметр conversion [kənˈvɜːrʒən] - түрлендіру
    [/su_spoiler]

    Example 2: Expressing Derived Units

    Problem: Express the unit of force (newton) in terms of base SI units.

    Solution
    Solution: Force = mass × acceleration F = m × a Dimensions: • mass [M] → kg • acceleration [L T⁻²] → m s⁻² Therefore: Newton (N) = kg⋅m⋅s⁻² Answer: 1 N = 1 kg⋅m⋅s⁻²

    Example 3: Dimensional Analysis

    Problem: Check if the equation s = ut + ½at² is dimensionally correct.

    Solution
    Solution: Let’s check each term: Left side: s (displacement) has dimensions [L] Right side: • ut: [L T⁻¹] × [T] = [L] • ½at²: [L T⁻²] × [T²] = [L] All terms have dimensions [L], so the equation is dimensionally correct and homogeneous.

    Example 4: Making Reasonable Estimates

    Problem: Estimate the mass of a typical car and express it in appropriate SI units.

    Solution
    Solution: A typical family car has a mass of approximately 1000-1500 kg. Reasonable estimate: 1200 kg = 1.2 × 10³ kg Alternative expressions: • 1.2 Mg (megagrams) • 1,200,000 g • 1.2 tonnes
    Interactive Investigation: Explore Unit Relationships
    Investigation Questions:

    1. Use the simulation to explore different unit conversions. How does changing the numerator affect the rate?
    2. Create examples of derived units by combining different base quantities.
    3. Practice converting between different prefixes using the interactive tools.
    Investigation Answers
    1. Changing the numerator scales the rate proportionally — doubling the numerator doubles the rate. 2. Examples: velocity (length/time), density (mass/volume), pressure (force/area) 3. Remember the factor relationships: kilo = 10³, milli = 10⁻³, etc. Move decimal point accordingly.
    Collaborative Learning: Group Activity 1
    Pair Work Instructions:

    • Work together to match SI units with their corresponding quantities
    • Discuss the logic behind each pairing with your partner
    • Take turns explaining why certain units are base units vs derived units
    • Quiz each other on prefix values and symbols
    Collaborative Learning: Group Activity 2
    Group Challenge Instructions:

    • Form teams of 3-4 students
    • Complete the interactive quiz on SI units and prefixes
    • Discuss each question as a team before answering
    • Compare your team’s performance with other groups
    • Review any concepts where your team scored lower
    Individual Assessment: Test Your Mastery
    Question 1: Which of the following is NOT a base SI unit? A) kilogram (kg) B) ampere (A) C) newton (N) D) second (s)
    Answer
    C) newton (N) Newton is a derived unit for force. It can be expressed as kg⋅m⋅s⁻² in terms of base units.
    Question 2: Convert 3.2 × 10⁻⁴ m to millimeters. A) 3.2 × 10⁻¹ mm B) 3.2 × 10⁻⁷ mm C) 3.2 × 10⁻¹ mm D) 0.32 mm
    Answer
    D) 0.32 mm 3.2 × 10⁻⁴ m = 3.2 × 10⁻⁴ × 10³ mm = 3.2 × 10⁻¹ mm = 0.32 mm
    Question 3: The unit of energy (joule) can be expressed in base SI units as: A) kg⋅m⋅s⁻² B) kg⋅m²⋅s⁻² C) kg⋅m⋅s⁻¹ D) kg²⋅m⋅s⁻²
    Answer
    B) kg⋅m²⋅s⁻² Energy = Force × Distance = (kg⋅m⋅s⁻²) × m = kg⋅m²⋅s⁻²
    Question 4: Which prefix represents the factor 10⁻⁶? A) nano (n) B) micro (μ) C) pico (p) D) milli (m)
    Answer
    B) micro (μ) Micro (μ) represents 10⁻⁶. Remember: nano = 10⁻⁹, pico = 10⁻¹², milli = 10⁻³
    Question 5: Check the dimensional homogeneity of the equation: E = ½mv² Where E is energy, m is mass, and v is velocity. Show that both sides have the same dimensions.
    Answer
    Solution: Left side (E — energy): [E] = [M L² T⁻²] Right side (½mv²): [m] = [M] [v²] = [L T⁻¹]² = [L² T⁻²] [mv²] = [M] × [L² T⁻²] = [M L² T⁻²] Both sides have dimensions [M L² T⁻²], so the equation is dimensionally homogeneous.
    Question 6: A quantity has the dimensions [M L⁻¹ T⁻²]. What physical quantity could this represent? A) Force B) Pressure C) Energy D) Power
    Answer
    B) Pressure Pressure = Force/Area = [M L T⁻²]/[L²] = [M L⁻¹ T⁻²]
    Question 7: Express 2.5 GW (gigawatts) in standard form using base SI units.
    Answer
    Solution: 2.5 GW = 2.5 × 10⁹ W Watt (W) = kg⋅m²⋅s⁻³ (in base units) Therefore: 2.5 GW = 2.5 × 10⁹ kg⋅m²⋅s⁻³
    Reflection: Consolidate Your Understanding
    Take time to reflect on your learning journey:

    1. Understanding Physical Quantities: Can you explain why both magnitude and units are essential for any measurement? □ I understand completely □ I need more practice □ I need help with this concept
    2. SI Base Units Mastery: Can you recall all five base units (mass, length, time, current, temperature) and their symbols? □ Yes, I know them all □ I know most of them □ I need to memorize these better
    3. Prefix Confidence: Rate your ability to convert between different SI prefixes (1-10): Large prefixes (kilo, mega, giga, tera): ___/10 Small prefixes (milli, micro, nano, pico): ___/10
    4. Derived Units Understanding: Can you express derived units in terms of base units? Examples you’re confident with: ________________ Examples you need to practice: ________________
    5. Dimensional Analysis Skills: Can you check if equations are dimensionally homogeneous? □ Yes, I can do this confidently □ I can do simple examples □ I need more practice with this
    6. Real-world Applications: How will you use this knowledge in: • Laboratory experiments: ____________________ • Problem solving: ____________________ • Daily life: ____________________
    7. Next Steps: What will you do to strengthen your understanding? □ Practice more unit conversions □ Memorize prefixes and their values □ Work on dimensional analysis problems □ Apply concepts to real-world situations □ Seek additional help or resources

    Key Takeaway: Understanding units and measurements is the foundation of all physics. Master these concepts now, and they will serve you throughout your scientific journey! Remember the acronym LMTIT for base units: Length (m), Mass (kg), Time (s), I (current — A), Temperature (K)

    ———————
    🎯 Learning Objectives: What will you learn?
    • Understand that all physical quantities consist of a numerical magnitude and a unit.
    • Make reasonable estimates of physical quantities included within the syllabus.
    • Recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K).
    • Express derived units as products or quotients of the SI base units and use the derived units for quantities listed in this syllabus as appropriate.
    • Use SI base units to check the homogeneity of physical equations.
    • Recall and use the following prefixes and their symbols: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T).
    🗣️ Language Objectives: How will you express your understanding?
    • Use key terms such as SI units, derived units, prefixes, and homogeneity in context.
    • Explain the difference between base and derived units using comparative structures.
    • Describe physical quantities using appropriate units and prefixes.
    📘 Key Terms Table: Learn the vocabulary
    Term (EN)Translation (RU)Translation (KZ)
    Physical QuantityФизическая величинаФизикалық шама
    SI UnitСИ единицаСИ бірлігі
    Derived UnitПроизводная единицаТуынды бірлік
    PrefixПрефиксПрефикс
    HomogeneityОднородностьБіртектілік
    🧠 Flashcards: Test yourself!
    • Physical Quantity: A measurable aspect of the physical world, such as length or mass.
    • SI Unit: The standard unit used to express a physical quantity.
    • Derived Unit: A unit that is a combination of base units.
    • Prefix: A symbol placed before a unit to indicate a multiple or fraction.
    • Homogeneity: The property of an equation where all terms have the same units.
    📚 Glossary: Understand the concepts
    • Physical Quantity: A property of a material or system that can be quantified by measurement.
      Translation
      Физическая величина — это свойство, которое можно измерить. / Физикалық шама — өлшеуге болатын қасиет.
    • SI Unit: The internationally accepted unit for a physical quantity.
      Translation
      СИ единица — международно принятая единица измерения. / СИ бірлігі — халықаралық қабылданған өлшем бірлігі.
    • Derived Unit: A unit formed by combining base units.
      Translation
      Производная единица — это единица, образованная из базовых. / Туынды бірлік — негізгі бірліктерден құралған.
    • Prefix: A symbol that modifies the value of a unit by a power of ten.
      Translation
      Префикс — символ, изменяющий значение единицы. / Префикс — бірліктің мәнін ондық дәрежеге өзгерту үшін қолданылатын таңба.
    • Homogeneity: The condition where all terms in an equation have the same dimensional units.
      Translation
      Однородность — это когда все члены уравнения имеют одинаковые размерности. / Біртектілік — теңдеудегі барлық мүшелердің бірдей өлшем бірліктері болуы.
    📝 Exercises: Memorize the key terms
    • Match the term with its definition: SI Unit, Derived Unit, Prefix, Homogeneity.
    • Fill in the blank: The SI unit of temperature is ______.
    • True or False: A derived unit is a base unit.
    Answer
    1. SI Unit → Standard unit; Derived Unit → Combination of base units; Prefix → Symbol for multiples; Homogeneity → Same units in equation. 2. Kelvin 3. False
    🎥 Watch and Learn: Video on Physical Quantities and Units
    📊 Worked Examples: Practice solving problems
    Example Problem

    Example: Express the unit of force (newton) in terms of base SI units.

    Solution
    Force = mass × acceleration = kg × m/s² So, 1 N = 1 kg·m/s²
    🔬 Investigation Task: Try a simulation!

    Instructions: Use the simulation to estimate physical quantities like length, mass, and time. Record your estimates and compare them with actual values.

    Answer
    Estimates may vary. For example, a pencil might be estimated as 15 cm, actual value 14.8 cm. Discuss the difference and sources of error.
    🤝 Group Task 1: Match units and quantities (LearningApps)

    Task: Match each physical quantity with its correct SI unit.

    🤝 Group Task 2: Quizizz Challenge

    Task: Complete the Quizizz quiz on SI units and physical quantities. Discuss your answers in pairs or small groups.

    🧑‍💻 Individual Task: Structured Questions
    1. Define a physical quantity and give two examples.</li