Содержимое курса
Additional and Extra materials
Here you can find different useful links, books and worksheets
0/6
General physics

Conservation of Energy — Physics Lesson

🎯 Learning Objectives
By the end of this lesson, students will be able to:

  • Recall and apply the principle of conservation of energy
  • Identify different forms of energy and energy transformations
  • Calculate kinetic and potential energy in various situations
  • Solve problems involving conservation of mechanical energy
  • Distinguish between conservative and non-conservative forces
  • Analyze energy flow diagrams and Sankey diagrams
🌐 Language Objectives
Students will:

  • Use appropriate scientific vocabulary related to energy conservation
  • Describe energy transformations using precise terminology
  • Explain the principle of conservation of energy in both written and oral forms
  • Interpret and create energy flow diagrams with correct labeling
  • Communicate problem-solving approaches using scientific language
📚 Key Terms
English TermRussian TranslationKazakh Translation
Conservation of EnergyЗакон сохранения энергииЭнергияның сақталу заңы
Kinetic EnergyКинетическая энергияКинетикалық энергия
Potential EnergyПотенциальная энергияПотенциалдық энергия
Mechanical EnergyМеханическая энергияМеханикалық энергия
Energy TransferПередача энергииЭнергия беру
Energy TransformationПревращение энергииЭнергияның түрленуі
Dissipated EnergyРассеянная энергияШашыранды энергия
Conservative ForceКонсервативная силаКонсервативті күш
🃏 Flashcards

Card 1: Energy Conservation

Front: What is the Law of Conservation of Energy?

Back: Energy cannot be created or destroyed, only transferred or transformed from one form to another.

Card 2: Kinetic Energy Formula

Front: What is the formula for kinetic energy?

Back: KE = ½mv² where m is mass and v is velocity

Card 3: Gravitational Potential Energy

Front: What is the formula for gravitational potential energy?

Back: PE = mgh where m is mass, g is gravitational acceleration, and h is height

Card 4: Mechanical Energy

Front: What is mechanical energy?

Back: The sum of kinetic and potential energy: E = KE + PE

📖 Glossary
Conservation of Energy
A fundamental principle stating that the total amount of energy in an isolated system remains constant over time.
Translation
Russian: Фундаментальный принцип, утверждающий, что общее количество энергии в изолированной системе остается постоянным во времени.
Kazakh: Оқшауланған жүйедегі энергияның жалпы мөлшері уақыт бойынша тұрақты болып қалатынын мәлімдейтін іргелі принцип.
Kinetic Energy
The energy an object possesses due to its motion, calculated as KE = ½mv².
Translation
Russian: Энергия, которой обладает объект благодаря своему движению, рассчитывается как KE = ½mv².
Kazakh: Заттың қозғалысына байланысты иемденетін энергия, KE = ½mv² формуласымен есептеледі.
Potential Energy
Stored energy in an object due to its position or configuration in a force field.
Translation
Russian: Накопленная энергия в объекте из-за его положения или конфигурации в силовом поле.
Kazakh: Күш өрісіндегі орналасуы немесе конфигурациясына байланысты заттағы жинақталған энергия.
Mechanical Energy
The sum of kinetic and potential energies in a mechanical system.
Translation
Russian: Сумма кинетической и потенциальной энергий в механической системе.
Kazakh: Механикалық жүйедегі кинетикалық және потенциалдық энергиялардың қосындысы.
Energy Dissipation
The process by which energy is lost to the surroundings, often as heat due to friction.
Translation
Russian: Процесс, при котором энергия теряется в окружающую среду, часто в виде тепла из-за трения.
Kazakh: Энергияның қоршаған ортаға, көбінесе үйкеліс салдарынан жылу түрінде жоғалу процесі.
📚 Theory: Conservation of Energy

The Principle of Conservation of Energy

The principle of conservation of energy is one of the most fundamental laws in physics. It states that total energy in an isolated system remains constant. Energy cannot be created or destroyed, but it can be transformed from one form to another.

Translation
Russian: Принцип сохранения энергии — один из самых фундаментальных законов физики. Он утверждает, что общая энергия в изолированной системе остается постоянной. Энергия не может быть создана или уничтожена, но может быть преобразована из одной формы в другую.

Kazakh: Энергияның сақталу принципі физиканың ең іргелі заңдарының бірі болып табылады. Ол оқшауланған жүйедегі жалпы энергия тұрақты болып қалатынын мәлімдейді. Энергия жасалмайды немесе жойылмайды, бірақ бір түрден екінші түрге айналады.

Forms of Energy

There are several forms of energy that are commonly studied in mechanics:

  • Kinetic Energy (KE): Energy of motion
    Formula: KE = ½mv²
  • Gravitational Potential Energy (PE): Energy due to height in a gravitational field

    Formula: PE = mgh
  • Elastic Potential Energy: Energy stored in compressed or stretched objects
Translation
Russian: Существует несколько форм энергии, которые обычно изучаются в механике: кинетическая энергия (энергия движения), гравитационная потенциальная энергия (энергия из-за высоты в гравитационном поле), упругая потенциальная энергия (энергия, запасенная в сжатых или растянутых объектах).

Kazakh: Механикада жиі зерттелетін энергияның бірнеше түрі бар: кинетикалық энергия (қозғалыс энергиясы), гравитациялық потенциалдық энергия (гравитациялық өрістегі биіктікке байланысты энергия), серпімді потенциалдық энергия (сығылған немесе созылған заттарда сақталған энергия).

Energy Conservation in Practice

When analyzing mechanical systems, we often consider the conservation of mechanical energy. In the absence of non-conservative forces (like friction), the total mechanical energy remains constant:

Etotal = KE + PE = constant

This means that as an object falls, its potential energy decreases while its kinetic energy increases by the same amount, keeping the total energy constant.

Translation
Russian: При анализе механических систем мы часто рассматриваем сохранение механической энергии. В отсутствие неконсервативных сил (таких как трение) общая механическая энергия остается постоянной. Это означает, что когда объект падает, его потенциальная энергия уменьшается, а кинетическая энергия увеличивается на ту же величину, сохраняя общую энергию постоянной.

Kazakh: Механикалық жүйелерді талдау кезінде біз жиі механикалық энергияның сақталуын қарастырамыз. Консервативті емес күштердің (үйкеліс сияқты) болмауында жалпы механикалық энергия тұрақты болып қалады. Бұл зат түскенде оның потенциалдық энергиясы азайып, кинетикалық энергиясы сол шамаға өсіп, жалпы энергияны тұрақты ұстайтынын білдіреді.

Energy Dissipation

In real-world situations, some energy is often lost to the surroundings due to friction, air resistance, and other non-conservative forces. This energy is said to be dissipated, usually as heat.

Translation
Russian: В реальных ситуациях часть энергии часто теряется в окружающую среду из-за трения, сопротивления воздуха и других неконсервативных сил. Говорят, что эта энергия рассеивается, обычно в виде тепла.

Kazakh: Нақты жағдайларда үйкеліс, ауа кедергісі және басқа да консервативті емес күштер салдарынан энергияның бір бөлігі қоршаған ортаға жоғалады. Бұл энергия шашыранды деп аталады, әдетте жылу түрінде.

🧠 Theory Questions

Test Your Understanding

  1. Easy: What happens to the total energy in an isolated system according to the conservation of energy principle?
    Answer
    The total energy remains constant. Energy cannot be created or destroyed, only transformed from one form to another.
  2. Medium: A ball is dropped from a height of 10 meters. Explain the energy transformations that occur as it falls.
    Answer
    Initially, the ball has maximum gravitational potential energy and zero kinetic energy. As it falls, potential energy decreases while kinetic energy increases. Just before hitting the ground, potential energy is minimum (nearly zero) and kinetic energy is maximum.
  3. Medium: Why can’t a perpetual motion machine work according to the conservation of energy?
    Answer
    A perpetual motion machine would need to create energy to continue running indefinitely without an external energy source. This violates the conservation of energy principle, which states that energy cannot be created or destroyed.
  4. Critical Thinking: In a real pendulum, the amplitude gradually decreases over time. How does this relate to energy conservation, and what happens to the «lost» energy?
    Answer
    Energy is not actually «lost» but transformed into thermal energy due to air resistance and friction at the pivot point. The total energy (mechanical + thermal) is still conserved, but the mechanical energy decreases as it converts to heat, which dissipates to the surroundings. This demonstrates that while total energy is conserved, useful mechanical energy can be degraded into less useful forms.
🎯 Exercises on Memorizing Terms

Complete the Sentences

  1. The _______ of conservation of energy states that energy cannot be created or destroyed.
  2. _______ energy is the energy an object has due to its motion.
  3. _______ energy is stored energy due to an object’s position.
  4. When energy is lost to the surroundings, it is said to be _______.
  5. The sum of kinetic and potential energy is called _______ energy.
Answer
1. principle/law 2. Kinetic 3. Potential 4. dissipated 5. mechanical

Match the Terms

Match each term with its correct definition:

Terms: Kinetic Energy, Potential Energy, Conservation, Dissipation, Mechanical Energy

Definitions:

  • A. Energy lost to surroundings
  • B. Energy due to motion
  • C. Total energy remaining constant
  • D. Sum of KE and PE
  • E. Stored energy due to position
Answer
Kinetic Energy — B, Potential Energy — E, Conservation — C, Dissipation — A, Mechanical Energy — D
📝 Problem Solving Examples

Example 1: Falling Object

Problem: A 2 kg ball is dropped from a height of 20 m. Calculate its velocity just before it hits the ground. (Ignore air resistance, g = 10 m/s²)

Falling ball diagram

Given:

  • Mass (m) = 2 kg
  • Height (h) = 20 m
  • g = 10 m/s²
  • Initial velocity = 0
Step-by-Step Solution

Step 1: Apply conservation of energy

Initial energy = Final energy

PEinitial + KEinitial = PEfinal + KEfinal

Step 2: Substitute values

mgh + 0 = 0 + ½mv²

mgh = ½mv²

Step 3: Solve for velocity

gh = ½v²

v² = 2gh

v = √(2gh) = √(2 × 10 × 20) = √400 = 20 m/s

Answer: The velocity just before hitting the ground is 20 m/s.

Short Solution

Quick Method
Using v² = 2gh directly: v = √(2 × 10 × 20) = 20 m/s

Example 2: Pendulum Motion

Problem: A pendulum bob of mass 0.5 kg is released from rest at a height of 0.8 m above its lowest point. Find its speed at the lowest point.

Pendulum energy diagram

Step-by-Step Solution

Step 1: Identify energy states

At highest point: PE = mgh, KE = 0

At lowest point: PE = 0, KE = ½mv²

Step 2: Apply conservation of energy

mgh = ½mv²

gh = ½v²

v = √(2gh) = √(2 × 10 × 0.8) = √16 = 4 m/s

Answer: The speed at the lowest point is 4 m/s.

Short Solution

Quick Method
v = √(2gh) = √(2 × 10 × 0.8) = 4 m/s

🔬 Research Investigation

Interactive Simulation: Energy Skate Park

Investigation Questions:

  1. Design a track and observe how energy changes as the skater moves. What do you notice about the total energy?
  2. Add friction to your track. How does this affect energy conservation?
  3. Try different track shapes. Does the track shape affect the maximum speed achieved?
  4. What happens to the energy when the skater goes in loops?
Investigation Answers
1. The total energy remains constant in the absence of friction. As the skater goes higher, kinetic energy decreases and potential energy increases.

2. With friction, the total mechanical energy decreases over time as some energy is converted to thermal energy.

3. Track shape doesn’t affect maximum speed if starting and ending heights are the same (conservation of energy).

4. In loops, the skater needs sufficient energy to maintain contact with the track. Energy is continuously converted between kinetic and potential forms.

👥 Group Activity

Collaborative Learning: Energy Scenarios

Work in pairs or small groups to complete this interactive energy conservation matching activity. Discuss your reasoning with your teammates and explain why certain energy transformations occur in different scenarios.

Group Discussion Questions:

  • Compare your answers with other groups. Where do you agree/disagree?
  • Create your own energy conservation scenario and challenge another group to solve it.
  • Design a simple experiment to demonstrate energy conservation using classroom materials.
✍️ Individual Assessment

Structured Questions — Analysis and Synthesis

  1. Analysis (5 marks): A roller coaster car of mass 500 kg starts from rest at the top of a 50 m high hill. If 20% of its mechanical energy is lost to friction by the time it reaches the bottom, calculate:
    • a) The initial potential energy
    • b) The energy lost to friction
    • c) The final kinetic energy
    • d) The final velocity

    Answer
    a) PEinitial = mgh = 500 × 10 × 50 = 250,000 J
    b) Energy lost = 20% of 250,000 = 50,000 J
    c) KEfinal = 250,000 — 50,000 = 200,000 J
    d) ½mv² = 200,000, so v = √(400,000/500) = √800 = 28.3 m/s
  2. Synthesis (6 marks): Design an energy-efficient transportation system for a mountain town. Consider:
    • How would you minimize energy losses?
    • What energy recovery systems could you implement?
    • How would conservation of energy principles guide your design?

    Answer
    Sample answer: Design a cable car system with regenerative braking. When cars descend, their gravitational PE helps lift ascending cars. Use lightweight materials to reduce energy needs. Implement magnetic levitation to reduce friction. Include solar panels to supplement energy needs. The design maximizes energy recovery and minimizes dissipation.
  3. Critical Analysis (7 marks): A company claims to have invented a machine that can generate 120% of the energy input. Analyze this claim using physics principles and explain why this violates fundamental laws.
    Answer
    This violates the conservation of energy law. No machine can output more energy than it inputs without an external energy source. Such a machine would be a perpetual motion machine of the first kind, which is impossible. Any real machine has efficiency less than 100% due to energy dissipation through friction, heat, sound, etc.
  4. Application (8 marks): Explain how hydroelectric dams demonstrate energy conservation. Trace the energy transformations from rain falling to electricity reaching homes.
    Answer
    Rain falls (gravitational PE) → Water accumulates in reservoir (stored PE) → Water flows through turbines (PE converts to KE) → Turbines rotate generators (mechanical energy converts to electrical energy) → Electricity transmitted to homes (electrical energy with some losses as heat in transmission lines). Each step demonstrates energy transformation while total energy is conserved.
  5. Evaluation (9 marks): Compare and contrast elastic and inelastic collisions in terms of energy conservation. Which type is more common in real life and why?
    Answer
    Elastic collisions: Kinetic energy is conserved, total momentum conserved. Objects bounce apart without permanent deformation. Inelastic collisions: Kinetic energy is not conserved (some converts to heat, sound, deformation), but total energy and momentum are conserved. Inelastic collisions are more common in real life because perfect elasticity is rare — most materials undergo some deformation or energy dissipation during collisions.
🔗 Additional Resources

Useful Websites and Links:

🤔 Lesson Reflection

Self-Assessment Questions:

  1. Understanding: Rate your understanding of the conservation of energy principle (1-5 scale):

    □ 1 (Need more help) □ 2 (Basic understanding) □ 3 (Good understanding) □ 4 (Very good) □ 5 (Excellent)
  2. Application: How confident are you in solving energy conservation problems?

    □ Not confident □ Somewhat confident □ Confident □ Very confident
  3. Connections: Can you relate today’s lesson to real-world examples?

    □ Yes, many examples □ Yes, a few examples □ Not sure □ No
  4. Questions: What aspect of energy conservation would you like to explore further?
  5. Applications: Give three real-world examples where you can observe energy conservation:

Learning Goals Review:

✓ I can state the principle of conservation of energy
✓ I can identify different forms of energy
✓ I can solve problems using energy conservation
✓ I can explain energy transformations in various systems
✓ I can distinguish between conservative and non-conservative forces

Next Lesson Preview:

In our next lesson, we’ll explore Power and Efficiency, building on today’s energy concepts to understand how quickly energy can be transferred and how efficiently systems can convert energy from one form to another.