Содержимое курса
Additional and Extra materials
Here you can find different useful links, books and worksheets
0/6
General physics
🎯 Learning Objectives
  • Understand that amount of substance is an SI base quantity with unit mol
  • Use molar quantities: one mole contains (N_A) particles (Avogadro constant)
  • Recognize an ideal gas obeys (pVpropto T) and apply (pV = nRT) and (pV = NkT)
  • Recall (k = tfrac{R}{N_A}) and state the basic kinetic theory assumptions
🗣️ Language Objectives
  • Use terms “amount of substance,” “Avogadro constant,” “ideal gas,” “Boltzmann constant,” “mean free path” accurately
  • Explain relationships between macroscopic and microscopic quantities in clear English
  • Interpret formulae and define each symbol precisely
  • Discuss idealizations and assumptions with correct academic vocabulary
📚 Key Terms and Translations
English TermRussianKazakh
Amount of substance (n)Количество вещества (n)Зат мөлшері (n)
Avogadro constant ((N_A))Постоянная Авогадро ((N_A))Авогадро тұрақтысы ((N_A))
Ideal gasИдеальный газИдеал газ
Universal gas constant (R)Универсальная газовая постоянная (R)Универсалды газ тұрақтысы (R)
Boltzmann constant (k)Постоянная Больцмана (k)Больцман тұрақтысы (k)
Kinetic theory of gasesКинетическая теория газовГаздардың кинетикалық теориясы
🃏 Vocabulary Study Cards

Mole

Definition: The amount of substance containing (N_A) particles

Value: (6.022times10^{23})

Ideal Gas

Definition: A hypothetical gas obeying (pVpropto T)

Equation: (pV = nRT), (pV = NkT)

Boltzmann Constant

Definition: (k = tfrac{R}{N_A})

Value: (1.38times10^{-23},mathrm{J/K})

Kinetic Theory

Assumptions: Particles in random motion, elastic collisions, negligible volume

📖 Glossary of Terms

Amount of substance (n)

The quantity measuring number of particles in a system, with unit mol.

Translation
Russian: Количество вещества — величина, характеризующая число частиц в системе, единица — моль.
Kazakh: Зат мөлшері — жүйедегі бөлшектер санын сипаттайтын шамасы, өлшем бірлігі — моль.
[/su_spoiler>

Ideal gas

A gas model in which particles do not interact except by elastic collisions, so (pVpropto T).

Translation
Russian: Модель газа, в котором частицы не взаимодействуют, кроме как при упругих столкновениях, поэтому (pVpropto T).
Kazakh: Бөлшектері тек серпімді соқтығыстар арқылы әрекет ететін газ моделі, сондықтан (pVpropto T).
[/su_spoiler>

Boltzmann constant (k)

The constant linking macroscopic and microscopic gas laws: (k = tfrac{R}{N_A}).

Translation
Russian: Константа, связывающая макро- и микрозаконы газа: (k = R/N_A).
Kazakh: Газ заңдарының макро- және микрошағылғандарын байланыстыратын тұрақты: (k = R/N_A).
[/su_spoiler>

Kinetic theory of gases

A theory assuming gas particles in random motion, negligible volume, no forces except collisions, and elastic collisions.

Translation
Russian: Теория, предполагающая, что частицы газа находятся в хаотическом движении, имеют пренебрежимо малый объем, не взаимодействуют, кроме столкновений, и столкновения упруги.
Kazakh: Газ бөлшектерінің кездейсоқ қозғалыста екенін, көлемі ескерілмейтінін, соқтығыстардан басқа әрекеттеспейтінін және серпімді соқтығыстар болатынын болжайтын теория.
[/su_spoiler>
🔬 Theory: Mole, Ideal Gas Law & Kinetic Theory

One -mole- of any substance contains (N_A) particles, where (N_Aapprox6.022times10^{23}) (Avogadro constant). An -ideal gas- obeys (pVpropto T); quantitatively:

(pV = nRT) and (pV = N k T)

The Boltzmann constant links them:
(k = tfrac{R}{N_A}).

The -kinetic theory of gases- assumes:

  • Particles in random motion
  • Elastic collisions between particles and walls
  • Negligible particle volume
  • No intermolecular forces except during collisions
Translation
Russian: Один моль содержит (N_A) частиц. Идеальный газ подчиняется (pVpropto T), причем (pV=nRT) и (pV=NkT), а (k=R/N_A). Кинетическая теория предполагает хаотическое движение частиц, упругие столкновения, пренебрежимо малый объем и отсутствие сил вне столкновений.
Kazakh: Бір моль (N_A) бөлшекке тең. Идеал газ үшін (pVpropto T), (pV=nRT) және (pV=NkT), ал (k=R/N_A). Газдардың кинетикалық теориясы бөлшектердің кездейсоқ қозғалысын, серпімді соқтығыстарды, көлемнің ескерілмеуін және соқтығыстардан басқа күштердің болмауын болжайды.
[/su_spoiler>

Theory Questions

Easy: Define one mole and give its particle count.
Answer
One mole is the amount of substance containing (N_Aapprox6.022times10^{23}) particles.
Medium: Show how (pV = NkT) follows from (pV = nRT).
Answer
Since (n = N/N_A) and (R = kN_A), (pV = (N/N_A)(kN_A)T = NkT).
Medium: Calculate (k) given (R=8.314,mathrm{J/(mol·K)}) and (N_A=6.022times10^{23}).
Answer
(k = R/N_A approx 8.314 / (6.022times10^{23}) approx 1.38times10^{-23},mathrm{J/K}.)
Hard (Critical Thinking): Discuss which kinetic theory assumption is most limiting when modeling real gases at high pressure.
Answer
Negligible volume and no intermolecular forces break down at high pressure; real gases deviate due to finite particle size and attractions (van der Waals behavior).
💪 Memorization Exercises

Fill in the Blanks

  1. One mole contains ______ particles.
  2. Ideal gas law: ______ = nRT.
  3. Microscopic form: pV = ______ kT.
  4. Boltzmann constant: k = ______/N_A.
  5. Assume particles undergo ______ collisions.

Answer
1. (6.022times10^{23})
2. pV
3. N
4. R
5. Elastic
📐 Worked Examples

Example 1: Moles from Mass

Find moles of 18.0 g H₂O (molar mass = 18.0 g/mol).

Mass to moles diagram
[/su_tabs>

Example 2: Pressure of Ideal Gas

Calculate pressure of 2.00 mol gas at 300 K in 5.00 L container. ((R=8.314))

Ideal gas pressure calculation

Solution
Answer
(n = dfrac{m}{M} = 18.0text{ g}/18.0text{ g/mol} = 1.00text{ mol}.)
[/su_tabs>
🧪 Interactive Investigation

Explore the Ideal Gas Law with PhET:


Investigation Answers
1. Vary N and T; confirm pV/T constant.
2. Plot pV vs T; verify linearity.
3. Use slope to estimate R.
👥 Collaborative Group Activity

In groups, complete this Quizizz on moles & gas laws:

📝 Individual Assessment

Solve these structured questions:

  1. Derive (pV = nRT) from hypothetical kinetic theory assumptions.
  2. Given N = (1.204times10^{24}) molecules at 273 K in 10 L, find p.
  3. Explain why real gases deviate from ideal behavior at high pressure.
  4. Design a method to measure (N_A) using electrolytic deposition.
  5. Critically compare Maxwell–Boltzmann vs quantum statistics for gas particles at low T.
🤔 Lesson Reflection
  • Which concept (mole, ideal gas law, kinetic theory) was most challenging?
  • How would you explain the significance of (k = R/N_A) to a peer?
  • What approximations in the ideal gas model are reasonable for real gases?
  • Set one goal to deepen your understanding of molecular behavior in gases.