- Analyse circular orbits by relating gravitational force to the centripetal acceleration it provides
- Derive orbital speed (v = sqrt{dfrac{GM}{r}}) for a small mass orbiting a large mass
- Calculate orbital period (T = dfrac{2pi r}{v}) and understand its dependence on radius
- Sketch force vs radius graphs and discuss stability of circular orbits
- Use terms “centripetal acceleration,” “orbital speed,” “orbital period,” “inverse-square law” correctly
- Explain relationships between force, mass, velocity, and radius in clear English
- Interpret and discuss derivations and graphs of circular motion
- Describe stability and perturbations of orbits using precise vocabulary
| English Term | Russian | Kazakh |
|---|---|---|
| Centripetal acceleration | Центростремительное ускорение | Орталыққа тартатын үдеу |
| Orbital speed | Орбитальная скорость | Орбиталдық жылдамдық |
| Orbital period | Период обращения | Орбита периоды |
| Gravitational constant (G) | Гравитационная постоянная | Гравитациялық тұрақты |
| Inverse-square law | Закон обратных квадратов | Квадраттық кері заң |
| Radius (r) | Радиус | Радиус |
Centripetal Acceleration
Definition: (a_c = dfrac{v^2}{r}), acceleration toward centre of circle
Use: Required to maintain circular motion
Orbital Speed
Definition: (v = sqrt{dfrac{GM}{r}})
Context: Speed for a stable circular orbit
Orbital Period
Definition: (T = dfrac{2pi r}{v})
Implication: Depends on radius and central mass
Inverse-Square Law
Definition: Gravitational force ∝ (1/r^2)
Effect: Strength decreases rapidly with distance
Centripetal Acceleration
The acceleration of a body moving in a circle of radius (r) at speed (v), directed toward the centre.
Russian: Ускорение тела, движущегося по окружности радиуса (r) со скоростью (v), направленное к центру.Kazakh: Радиусы (r) және жылдамдығы (v) бар доға бойымен қозғалатын дененің орталыққа бағытталған үдеуі.
[/su_spoiler>
Orbital Speed
The constant speed a small mass must have to maintain a circular orbit under gravity.
Russian: Постоянная скорость, необходимая малой массе для круговой орбиты под действием гравитации.Kazakh: Гравитация әсерінен сақиналық орбитаны ұстап тұру үшін қажетті тұрақты жылдамдық.
[/su_spoiler>
Relating Gravity to Centripetal Force
For a mass (m) orbiting a much larger mass (M) at radius (r), the gravitational force
(F_g = G dfrac{M m}{r2}
must equal the centripetal force
(F_c = m dfrac{v^2}{r}).
Equate them:
(;G dfrac{M m}{r^2} = m dfrac{v^2}{r})
Cancel (m) and solve for orbital speed:
(v = sqrt{dfrac{G M}{r}})
Then the orbital period is:
(T = dfrac{2pi r}{v} = 2pi sqrt{dfrac{r^3}{G M}})
Complete the Formulas
- Centripetal acceleration: (a_c = dfrac{v^2}{__}).
- Orbital speed: (v = sqrt{dfrac{__,M}{r}}).
- Orbital period: (T = 2pisqrt{dfrac{r^3}{__,M}}).
- Gravitational force: (F = G dfrac{M m}{r^__}).
Additional Video Resources:
• Orbital Motion & Kepler’s Laws
Example 1: Low Earth Orbit Speed
Calculate speed of satellite orbiting Earth (M=5.97×1024 kg) at r=7.0×106 m.
Example 2: Geostationary Orbit Period
Find period for satellite at r=4.23×107 m around Earth.
Explore orbits and Kepler’s laws with PhET:
Use a Quizizz challenge on circular orbits:
Solve these structured questions:
- Derive (v=sqrt{frac{GM}{r}}) from force balance.
- Calculate speed for Mars satellite at r=4.0×106 m (M=6.42×1023 kg).
- Show how period scales with radius and mass of central body.
- Discuss effect of small radial perturbation on circular orbit stability.
- Compare energy (kinetic + potential) of circular vs elliptical orbit at same perigee.
- How does radius affect orbital speed and period?
- Which assumption (negligible mass, perfect circle) is most limiting?
- What real-world factors (atmosphere, perturbations) alter ideal orbits?
- How can you apply circular orbit concepts to satellite design?